71 research outputs found

    Distributed and Asynchronous Data Collection in Cognitive Radio Networks with Fairness Consideration

    Get PDF
    As a promising communication paradigm, Cognitive Radio Networks (CRNs) have paved a road for Secondary Users (SUs) to opportunistically exploit unused licensed spectrum without causing unacceptable interference to Primary Users (PUs). In this paper, we study the distributed data collection problem for asynchronous CRNs, which has not been addressed before. We study the Proper Carrier-sensing Range (PCR) for SUs. By working with this PCR, an SU can successfully conduct data transmission without disturbing the activities of PUs and other SUs. Subsequently, based on the PCR, we propose an Asynchronous Distributed Data Collection (ADDC) algorithm with fairness consideration for CRNs. ADDC collects a snapshot of data to the base station in a distributed manner without the time synchronization requirement. The algorithm is scalable and more practical compared with centralized and synchronized algorithms. Through comprehensive theoretical analysis, we show that ADDC is order-optimal in terms of delay and capacity, as long as an SU has a positive probability to access the spectrum. Furthermore, we extend ADDC to deal with the continuous data collection issue, and analyze the delay and capacity performances of ADDC for continuous data collection, which are also proven to be order-optimal. Finally, extensive simulation results indicate that ADDC can effectively accomplish a data collection task and significantly reduce data collection delay. [ABSTRACT FROM PUBLISHER

    Efficient Query-Based Attack against ML-Based Android Malware Detection under Zero Knowledge Setting

    Full text link
    The widespread adoption of the Android operating system has made malicious Android applications an appealing target for attackers. Machine learning-based (ML-based) Android malware detection (AMD) methods are crucial in addressing this problem; however, their vulnerability to adversarial examples raises concerns. Current attacks against ML-based AMD methods demonstrate remarkable performance but rely on strong assumptions that may not be realistic in real-world scenarios, e.g., the knowledge requirements about feature space, model parameters, and training dataset. To address this limitation, we introduce AdvDroidZero, an efficient query-based attack framework against ML-based AMD methods that operates under the zero knowledge setting. Our extensive evaluation shows that AdvDroidZero is effective against various mainstream ML-based AMD methods, in particular, state-of-the-art such methods and real-world antivirus solutions.Comment: To Appear in the ACM Conference on Computer and Communications Security, November, 202

    Static Semantics Reconstruction for Enhancing JavaScript-WebAssembly Multilingual Malware Detection

    Full text link
    The emergence of WebAssembly allows attackers to hide the malicious functionalities of JavaScript malware in cross-language interoperations, termed JavaScript-WebAssembly multilingual malware (JWMM). However, existing anti-virus solutions based on static program analysis are still limited to monolingual code. As a result, their detection effectiveness decreases significantly against JWMM. The detection of JWMM is challenging due to the complex interoperations and semantic diversity between JavaScript and WebAssembly. To bridge this gap, we present JWBinder, the first technique aimed at enhancing the static detection of JWMM. JWBinder performs a language-specific data-flow analysis to capture the cross-language interoperations and then characterizes the functionalities of JWMM through a unified high-level structure called Inter-language Program Dependency Graph. The extensive evaluation on one of the most representative real-world anti-virus platforms, VirusTotal, shows that \system effectively enhances anti-virus systems from various vendors and increases the overall successful detection rate against JWMM from 49.1\% to 86.2\%. Additionally, we assess the side effects and runtime overhead of JWBinder, corroborating its practical viability in real-world applications.Comment: Accepted to ESORICS 202

    Fine-Grained Fashion Similarity Learning by Attribute-Specific Embedding Network

    Full text link
    This paper strives to learn fine-grained fashion similarity. In this similarity paradigm, one should pay more attention to the similarity in terms of a specific design/attribute among fashion items, which has potential values in many fashion related applications such as fashion copyright protection. To this end, we propose an Attribute-Specific Embedding Network (ASEN) to jointly learn multiple attribute-specific embeddings in an end-to-end manner, thus measure the fine-grained similarity in the corresponding space. With two attention modules, i.e., Attribute-aware Spatial Attention and Attribute-aware Channel Attention, ASEN is able to locate the related regions and capture the essential patterns under the guidance of the specified attribute, thus make the learned attribute-specific embeddings better reflect the fine-grained similarity. Extensive experiments on four fashion-related datasets show the effectiveness of ASEN for fine-grained fashion similarity learning and its potential for fashion reranking.Comment: 16 pages, 13 figutes. Accepted by AAAI 2020. Code and data are available at https://github.com/Maryeon/ase
    • …
    corecore